
 

  

Abstract—  One month ahead prediction of suburban average 
electricity load, based on short time series, is presented. It will be 
shown here first that for the subject of short term prediction of 
electricity load, even though a large amount of data may be 
available, only the most recent of it may be of importance. That 
gives rise to prediction based on limited amount of data. We here 
propose implementation of some instances of architectures of 
artificial neural networks as potential systematic solution of that 
problem as opposed to heuristics that are in use. To further rise 
the dependability of the predicted data averaging of two 
independent predictions is proposed. A specific approach to the 
choice of the number of hidden neurons will be implemented. 
Example will be given related to monthly forecasting of the 
electricity load at suburban level. Prediction is carried out on 
real data taken from the literature. Prediction errors lower than 
two percent were obtained.   

 
Index Terms— forecast, load prediction, electricity, artificial 
neural networks 

I. INTRODUCTION 

 
In an inspired paper [1] Prof. Mendel' claims: "Prediction 

of short time series is a topical problem. Cases where the 
sample length N is too small for generating statistically 
reliable variants of prediction are encountered every so often. 
This form is characteristic of many applied problems of 
prediction in marketing, politology, investment planning, and 
other fields." Further he claims: "Statistical analysis suggests 
that in order to take carefully into account all components the 
prediction base period should contain several hundreds of 
units. For periods of several tens of units, satisfactory 
predictions can be constructed only for the time series 
representable as the sum of the trend, seasonal, and random 
components. What is more, these models must have a very 
limited number of parameters. Series made up by the sum of 
the trend and the random component sometimes may be 
predicted for even a smaller base period. Finally, for a 
prediction base period smaller than some calculated value 
Nmin, a more or less satisfactory prediction on the basis of 
observations is impossible at all, and additional data are 
required". 

Among the fields not mentioned in [1], dealing with really 
small set of data or "prediction base period", we will discuss 
here monthly short-term prediction of electricity loads at 
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suburban level or on the level of a low voltage transformer 
station. In fact, the amount of data available in this case is 
large enough to apply any other forecasting method [2,3,4] 
but looking to the load diagram i.e. monthly load-value 
curves, we easily recognize that past values of the consump-
tion are not very helpful when prediction is considered. That 
stands even for data from the previous month and for data 
from the same month in the previous year. Accordingly, we 
propose the problem of prediction of the load value in the next 
month to be performed as a deterministic prediction based on 
very short time series. To help the prediction, however, in an 
appropriate way, we introduce past values e.g. load for the 
same month but in previous year. That is in accordance with 
existing experience claiming that every month in the year has 
its own general consumption profile [2].  

Having all that in mind we undertook a project of 
developing an artificial neural network (ANN) based method 
that will be convenient for systematic implementation in stati-
onary time series prediction with reduced set of data. Our first 
results were applied to prediction of environmental as well as 
technological data and published in [5, 6, 7]. Analysis as to 
why neural networks are implemented for prediction may be 
found in [5]. The main idea implemented was the following. If 
one wants to create neural network that may be used for 
forecasting one should enable this property during ANN‘s 
training. In addition, the ANN used has to have such a struc-
ture to accommodate to the training process for prediction. 

 Following these considerations new forecasting architec-
tures were developed. Namely, prediction is an activity that is 
always related to uncertainty. One is supposed to have at least 
two solutions for them to support each other. The structures 
developed were named Time Controlled Recurrent (TCR) and 
Feed Forward Accommodated for Prediction (FFAP). Both 
were implemented successfully for prediction in modern 
developments in microelectronics [7] as well as in other areas 
including load predict ion on yearly basis [8]. 

The goal of this paper is to put the new methods into a 
broader context of implementation of ANNs for short term 
forecasting of electricity loads on monthly basis. Namely, the 
monthly load curve at a suburban (transformer station) level is 
influenced by several factors the main being the time of the 
year. Accordingly a predictor is to be capable to approximate 
two curves concurrently. To meet that we upgraded our 
original TCR and FFAP ANN structures to accommodate for 
implementation in the field of short term electricity load 
forecasting on hourly basis. The results obtained were 
published in [9] and [10], for feed-forward and for recurrent 
ANNs, respectively. That ideas will now be implemented for 
monthly prediction. In addition we here we propose an ave-
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raging method that will use both predictions in order to smo-
oth the prediction error so making the final result as depen-
dable as possible. Finally, we propose a method for finding 
the proper number of hidden neurons in both networks. 

The structure of the paper is as follows. After general 
definitions and statement of the problem we will give a short 
background related to ANNs application to forecasting. Then 
we will describe two solutions for possible applications of 
ANNs aimed to the same forecasting task. Finally short 
discussion of the results and consideration related to future 
work will be given. 

II. PROBLEM FORMULATION AND SOLUTION 
A time series is a number of observations that are taken 

consecutively in time. A time series that can be predicted 
precisely is called deterministic, while a time series that has 
future elements which can be partly determined using previ-
ous values, while the exact values cannot be predicted, is said 
to be stochastic. We are here addressing only deterministic 
type of time series.  

Consider a scalar time series denoted by yi, i=1,2, … m. It 
represents a set of observables of an unknown function , taken 
at equidistant time instants separated by the interval Δt i.e. 
ti+1=ti+Δt. One step ahead forecasting means to find such a 

function )(ˆˆ tfy = , that will perform the mapping  

ε1ˆ)1(1 ++=+=+ mymtfmy ,    (1) 

where 1ˆ +my is the desired response, with an acceptable error 
ε. 

The prediction of a time series is synonymous with 
modeling of the underlying physical or social process 
responsible for its generation. This is the reason of the 
difficulty of the task. There have been many attempts to find 
solution to the problem. Among the classical deterministic 
methods we may mention the k-nearest-neighbor [11], in 
which the data series is searched for situations similar to the 
current one each time a forecast needs to be made. This 
method asks for periodicity to be exploited that, as already 
discussed, here is not of much a help. 

 
Figure 1. Fully connected feed-forward neural network with one hidden layer 
and multiple outputs 

 
In the past decades ANNs have emerged as a technology 

with a great promise for identifying and modeling data pat-
terns that are not easily discernible by traditional methods. A 
comprehensive review of ANN use in forecasting may be 
found in [12]. Among the many successful implementations 
we may mention [13]. A common feature, however, of the 

existing application is that they ask for a relatively long time 
series to become effective. Typically it should be not shorter 
then 50 data points [12]. In the case under consideration it 
means at least five years backward. This is due to the fact that 
they all look for periodicity within the data. Very short time 
series were treated [13]. Here additional "nonsample 
information" was added to the time series in order to get 
statistical estimation from deterministic data.  

That is why we went for a search for topological structures 
of ANN that promise prediction based on short time series. In 
the next, we will first briefly introduce the feed-forward 
neural networks that will be used as a basic structure for 
prediction throughout this paper.  

The network is depicted in Fig. 1. It has only one hidden 
layer, which has been proven sufficient for this kind of 
problem [14]. Indices: "in", "h", and "o", in this figure, stand 
for input, hidden, and output, respectively. For the set of 
weights, w(k,l), connecting the input and the hidden layer we 
have: k=1,2,..., min, l=1,2,..., mh, while for the set connecting 
the hidden and output layer we have: k=1,2, ...mh, l=1,2,..., 
mo. The thresholds are here denoted as rmx,θ where r=1,2, 

…, mh or mo, with x standing for "h" or "o", depending on the 
layer. The neurons in the input layer are simply distributing 
the signals, while those in the hidden layer are activated by a 
sigmoidal (logistic) function. Finally, the neurons in the 
output layer are activated by a linear function. The learning 
algorithm used for training is a version of the steepest-descent 
minimization algorithm [15]. The number of hidden neurons, 
mh, is of main concern. To get it we applied a procedure that 
is based on proceedings given in [16] but here further 
developed.  

In prediction of time series, in our case, a set of observables 
(samples) is given (approximately every fifteen minutes) 
meaning that only one input signal is available being the 
discretized time [17]. To get the average monthly 
consumption we averaged the data for every month of the 
year. According to (1) we are predicting one quantity at a time 
meaning one output is needed, too. The values of the output 
are numbers (average power for a period of one month). To 
make the forecasting problem numerically feasible we 
performed transformation in both the time variable and the 
response. The time was reduced by t0 so that  

t=t*-t0.             (2)  

Having in mind that t* stands for the time (in months), this 
reduction gives the value of 0 to the time (t0) related to the 
first sample. The samples are normalized in the following way  

y=y* -M            (3)  

where y* stands for the current value of the target function, M 
is a constant (for example M=596,8595, being the average 
monthly consumption for a year).  

If the architecture depicted in Fig. 1 was to be implemented 
(with one input and one output terminal) the following series 
would be learned: (ti, f(ti)), i=1,2,....  

Starting with the basic structure of Fig. 1, in [6] possible 
solutions were investigated and two new architectures were 
suggested to be the most convenient for the solution of the 



 

forecasting problem based on short prediction base period. 
Here, however, having in mind the availability of data related 
to previous year, these architectures will be properly 
accommodated. 

The first one, named time controlled recurrent (TCR) was 
inspired by the time delayed recurrent ANN. It is a recurrent 
architecture with the time as input variable so controlling the 
predicted value. Our intention was to benefit from both: the 
generalization property of the ANNs and the success of the 
recurrent architecture. Its structure is depicted in Fig. 2a. We 
extend, now, this architecture so that we allow for the values 
of the power consumption, at a given time per day, but of the 
same month in the previous year, to control the output. 

Hence, the term extended will be added. The resulting 
architecture is depicted in Fig. 2b. It will be referred from now 
on to as the Extended Time Controlled Recurrent (ETCR) 
architecture. Here in fact, the network is learning a set in 
which the output value representing the average power 
consumption for a given month in a given year is controlled 
by the present time and by its own previous instances: 
 

a) 

tipn- ,i1 pn,i-2

∆t
pn,i-1

pn,i

pn,i-3

∆t∆t

 b) 
Figure 2. a) Time controlled recurrent ANN and b) ETCR. Extended time 
controlled recurrent ANN 

...3,2,1),1,3,,2,,1,,(, =−−−−= iinpinpinpinpitfinp   (4) 

Here n stand for the number of the month (in the year). In 
that way the values indexed with n are from the actual year, 
while the value indexed n-1 is from the previous year. i stands 
for the i-th sample in the year selected. The actual value pn,i is 
unknown and should be predicted. Incrementing i, in fact, 
means moving the prediction window one step ahead. These 
quantities are illustrated in Fig. 3. It represents the load curve 
for two years. Note the x-axis is reduced to the first month 

available while the y-axis is reduced by the average monthly 
value of the load.  

 
Fig. 3. Average power (reduced by 596,8595) versus time (months) 
 

The second structure was named feed forward 
accommodated for prediction (FFAP) and depicted in Fig. 4a. 
Our idea was here to force the neural network to learn the 
same mapping several times simultaneously but shifted in 
time. In that way, we suppose, the previous responses of the 
function will have larger influence on the f(t ) mapping. 

In this architecture there is one input terminal that, in our 
case, is ti. The Output3 terminal, or the future terminal, in our 
case, is to be forced to approximate yi+1. In cases where 
multiple-step prediction is planned Output3 may be seen as a 
vector. Output2 should represents the present value i.e. yi. 
Finally, Output1 should learn the past value i.e. yi-1. Again, if 
one wants to control the mapping by a set of previous values, 
Output1 may be seen as a vector.  

As an example we may express the functionality of the 
network as  

{yi+1, yi, yi-1, yi-2}=f(ti),   i=3,4,...     (5) 

where Output1={yi+1, yi, yi-1, yi-2}, meaning that: one future 
(i+1), one present (i), and two previous (i-1, i-2) responses are 
to be learned.  

It is our experience that the FFAP architectures produce 
better results than the TCR. Nevertheless, we regularly 
implement both of them and use the results obtained as 
reference to each other when choosing the forecast that makes 
most sense. That allows avoidance of solutions that represent 
local minima in the optimization process representing the 
training of the ANN.  

In the case of hourly prediction of power consumption we 
extended the FFAP architecture exactly in the same way as we 
did with the TCR. In that way for the approximation function 
we may write the following 

{pn,i+1, pn,i, pn,i-1, pn,i-2} = f(ti, pn-1,i}  i=1.2.3...  (6) 

The new network is approximating the future (unknown) 
value pn,i+1, based on the actual time ti, the actual 
consumption pn,i, the past consumption values for the given 
year (pn,i-k, k=1,2), and the past consumption values for the 
same month at the actual time of the previous year (pn-1,i). 
The new architecture is referred to as extended feed forward 
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accommodated for predict ion (EFFAP). It is depicted in Fig. 
4b. 

 a) 
 

pn i+-1, 1

ti

pn i, -2

pn i, -1

pn i,

pn i, +1 b) 
Figure 4. a) Feed forward ANN structure accommodated for predict ion 
(FFAP), and b) The Extended feed forward accommodated for predict ion 
ANN (EFFAP) according to (6) 

 
In the next the procedure of implementation of ETCR and 

EFFAP network will be described. It consists of the following 
steps. 
STEP 1. For a given month (ith month) a training table is con-

structed for both ANN structures. These constructs are 
illustrated in Table I and Table II, for the ETCR and 
EFFAP network, respectively, for i=18.   

STEP 2. Both network are repeatedly trained with the same 
training data but with increased complexity i.e. with 
increased number of hidden neurons. We start with mh=3 
and end with mh=10. The number of neurons is chosen to be 
"small" since the problem under consideration is not a 
difficult one. One is not to forget that an ETCR ANN, like 
the one depicted in Fig. 2, having 10 hidden neurons, will 
have 70 free parameters which is much above the need to 
approximate the curve given in Fig. 3. 

STEP 3. To find the proper ETCR and EFFAP number of 
hidden neurons, the predicted values are compared. 
Namely, we consider the prediction as a step in darkness 
and to get an authentic prediction, we think, one needs at 
least two solutions supporting each other (The well known 
medical "second opinion"). In that way we choose two 
among the eight ETCR and eight EFFAP solutions (each 
from a kind) that are the most similar. 

4. Since the ETCR and the EFFAP solutions just chosen are of 
the same importance, as the final result, we adopt their 
average. 

5. Then we proceed to the next month 

III. IMPLEMENTATION EXAMPLE 

 The diagram depicted in Fig. 3 is created from the UNITE 
competition data [17]. Since there are data for two years only we 
created 24 instances as shown in Fig. 3. Having in mind, however 

that our method asks for a value of the load for the same month in 
the previous year, the first 12 instances are to be reserved. 
Furthermore, to start the prediction we need some values of the 
previous months. For these reasons we started the prediction with 
the fourth part of the data i.e. from the 19th month. 
 Table I and Table II are examples of the training set for the 
first prediction. The rest of the training set is obtained by 
"sliding" down the table of the load as a function of the month.  

TABLE I ONE TRAINING SESSION FOR ECTR 

Inputs Outputs 
tn pn-1,i pn-2,i pn-3,i pn,i-1 pn,i 
13 88.9537 76.16484 23.58744 121.6963 88.54376 
14 88.54376 88.9537 76.16484 99.9508 89.14276 
15 89.14276 88.54376 88.9537 43.22303 73.22104 
16 73.22104 89.14276 88.54376 18.00998 -34.8074 
17 -34.8074 73.22104 89.14276 -85.0241 -69.965 
18 -69.965 -34.8074 73.22104 -104.965 -89.8928 
19 -89.8928 -69.965 -34.8074 -123.849 ? =pn,19 

 
TABLE II ONE TRAINING SESSION FOR EFFAP 

Inputs Outputs 
ti pn-1,i pn,i-2 pn,i-1 pn,i pn,i+1 
12 121.6963 23.58744 76.16484 88.9537 88.54376 
13 99.9508 76.16484 88.9537 88.54376 89.14276 
14 43.22303 88.9537 88.54376 89.14276 73.22104 
15 18.00998 88.54376 89.14276 73.22104 -34.8074 
16 -85.0241 89.14276 73.22104 -34.8074 -69.965 
17 -104.965 73.22104 -34.8074 -69.965 -89.8928 
18 -123.849 ? ? ? ?=pn,19 

 
TABLE III THE MOST SIMILAR ETCR AND EFFAP SOLUTIONS ON 

TRANSFORMED INPUT DATA 

tn 
ECTR EFFAP Average 

(p) 
Expected 

mh p mh p 
19 3 -95.5011 4 -83.9625 -89.7318 -86.6497 
20 9 -94.309 3 -103.751 -99.03 -100.462 
21 7 -85.2832 7 -33.3583 -59.3208 -60.1296 
22 4 2.09448 7 17.3844 9.73944 20.94362 
23 4 87.2713 7 84.9242 86.097 83.82734 
24 4 100.231 3 122.701 111.466 120.2991 
 

TABLE IV THE MOST SIMILAR ETCR AND EFFAP SOLUTIONS ON RESTORED 
ORIGINAL INPUT DATA 

 

tn 
ECTR EFFAP Average 

(p) 
Expected 

mh p mh p 
19 3 501,358 4 512,897 507,128 510,2098 
20 9 502,551 3 493,109 497,830 496,3975 
21 7 511,576 7 563,501 537,539 536,7299 
22 4 598,954 7 614,244 606,600 617,8031 
23 4 684,131 7 681,784 682,957 680,6868 
24 4 697,091 3 719,561 708,326 717,1586 

 
 The results of STEP 3 described in the previous paragraph, 
Table III was created. While its content is selfexplainable we 



 

will here stress again that among the predictions for a given 
month, the two most similar were saugth. So, for example, for 
the twentisecond month the prediction of the ETCR ANN 
built by four hidden neurons and the EFFAP ANN built by 
seven neurons were the most similar ones. These two were 
chosen and the average calculated. 

 
Fig. 5. Visualization of the last two columns of Table IV 
 
 To complete the prediction the values produced by (3) were 
to be restored . That practicaly meant that all entries of Table 
III were to be incremented by 596,8595. In that way Table IV 
was created. Fig. 5 depicts the two last columns of Table IV. 
Namely the expected and the predicted values are drawn 
together. 
  

TABLE V PREDICTION ERROR 
 

tn 
Error (%) 

ECTR 
Error (%) 
EFFAP 

Error (%) 
Average 

19 1,735 -0,5267 0,604 
20 -1,240 0,6625 -0,289 
21 4,687 -4,988 -0,151 
22 3,051 0,576 1,813 
23 -0,506 -0,161 -0,334 
24 2,798 -0,335 1,232 

 

 
Figure 6. Prediction error (in %) of the STCR, EFFAP and the averaged 
solution (Graphical depiction of Table V)  
 
 Finally, in order to get even better insight into the results, 
the prediction error was calculated and depicted in Table V. 
As can be seen the error of the average value compared with 
the expected one is less than 2% in all six cases. A graphical 

representation of Table V is given in Fig. 6. 
 It is interesting to note that the prediction errors of the 
ETCR and the EFFAP ANNs are much larger (less than 6%). 
That means that the worst prediction would never exceed that 
value. By good luck, however, in this case, cancellation 
occurred during the computation of the average which led to 
an extraordinary good result. 

IV. CONCLUSION 
One month ahead prediction of suburban average electricity 

load, based on short time series, was presented. It was shown 
first that for the subject of short term prediction of electricity 
load, even though a large amount of data may be available, 
only the most recent of it may be of importance. That gives 
rise to prediction based on limited amount of data. We here 
proposed implementation of some instances of architectures 
of artificial neural networks as potential systematic solution of 
that problem as opposed to heuristics that are in use. To 
further rise the dependability of the predicted data averaging 
of two independent predictions was proposed. A specific 
approach to the choice of the number of hidden neurons was 
implemented. Example was given related to monthly 
forecasting of the electricity load at suburban level. Prediction 
was carried out on real data taken the literature. Prediction 
errors lower than two percent were obtained.    
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